
LADS: Optimizing Data Transfers using Layout-Aware Data Scheduling

Youngjae Kim, Scott Atchley, Geoffroy R. Vallée, Galen M. Shipman

Oak Ridge National Laboratory
{kimy1, atchleyes, valleegr, gshipman}@ornl.gov

Technical Report ORNL/TM-2014/251
January, 2015

Abstract

While future terabit networks hold the promise of signifi-
cantly improving big-data motion among geographically
distributed data centers, significant challenges must be
overcome even on today’s 100 gigabit networks to real-
ize end-to-end performance. Multiple bottlenecks exist
along the end-to-end path from source to sink. Data stor-
age infrastructure at both the source and sink and its in-
terplay with the wide-area network are increasingly the
bottleneck to achieving high performance. In this paper,
we identify the issues that lead to congestion on the path
of an end-to-end data transfer in the terabit network en-
vironment, and we present a new bulk data movement
framework called LADS for terabit networks. LADS ex-
ploits the underlying storage layout at each endpoint to
maximize throughput without negatively impacting the
performance of shared storage resources for other users.
LADS also uses the Common Communication Interface
(CCI) in lieu of the sockets interface to use zero-copy,
OS-bypass hardware when available. It can further im-
prove data transfer performance under congestion on the
end systems using buffering at the source using flash
storage. With our evaluations, we show that LADS can
avoid congested storage elements within the shared stor-
age resource, improving I/O bandwidth, and data transfer
rates across the high speed networks.

1 Introduction
While “Big Data” is now in vogue, many DOE science
facilities have produced a vast amount of experimental
and simulation data for many years. Several U.S. De-
partment of Energy (DOE) leadership-computing facili-
ties, such as the Oak Ridge Leadership Computing Fa-
cility (OLCF) [22], the Argonne Leadership Computing
Facility (ALCF) [1], and the National Energy Research
Scientific Computing (NERSC) [20] generate hundreds
of petabytes per year of simulation data and are projected
to generate in excess of 1 exabyte per year by 2018 [30].

The Big Data and Scientific Discovery report from the
DOE, Office of Science, Office of Advanced Scientific
Computing Research (ASCR) [5], predicts one of scien-
tific data challenges is the worsening input/output (I/O)
bottleneck and the high data movement cost.

To accommodate growing volumes of data, organi-
zations will continue to deploy larger, well provisioned
storage infrastructures. These data sets, however, do not
exist in isolation. For example, scientists and their col-
laborators who use the DOE’s computational facilities
typically have access to additional resources at multiple
facilities and/or universities. They use these resources
to analyze data generated from experimental facilities or
simulation on supercomputers and to validate their re-
sults, both of which requires moving the data between
geographically dispersed organizations. Some examples
of large collaborations include: OLCF petascale sim-
ulation needs nuclear interaction datasets processed at
NERSC; the ALCF runs a climate simulation and vali-
dates the simulation results with climate observation data
sets at ORNL data centers.

In order to support the increased growth of data and
the desire to move it between organizations, network
operators are increasing the capabilities of the network.
DOE’s Energy Sciences Network (ESnet) [31], for ex-
ample, has upgraded its network to 100 Gb/s between
many DOE facilities, and future deployments will most
likely support 400 Gb/s followed by 1 Tb/s throughput.
However, these network improvements only contribute to
improving the network data transfer rate, not end-to-end
data transfer rate from source storage system to sink stor-
age system. The data transfer nodes (DTN) connected
to these storage systems and the wide-area network are
the focal point for the impedance match between the
faster networks and the relatively slower storage sys-
tems. In order to improve the scalability, parallel file sys-
tems (PFS) use separate servers to service metadata and
I/O operations in parallel. To improve I/O throughput,
the PFS use ever higher counts of I/O servers connected

1



more disks. DOE sites have widely adopted various PFS
to support both high performance I/O and large data sets.
Typically, these large scale storage systems use tens to
hundreds of I/O servers, each with tens to hundreds of
disks, to improve scalability of performance and capac-
ity.

Even as networks reach terabit speeds and PFS grow
to exabytes, the storage-to-network mismatch will likely
continue to be a major challenge. More importantly, such
storage systems are shared resources servicing multiple
clients including large computational systems. As con-
tention for these large resources grows, there can be se-
rious Quality-of-Service (QoS) differences between the
observed I/O performance by users [11, 37]. Moreover,
disk services can degrade while disks in the redundant
array of independent disks (RAID) are rebuilding due to
failed disks [36, 13]. Also, I/O load imbalance is a seri-
ous problem in parallel storage systems [17, 19]. The
results showed that a few controllers are highly over-
loaded while most are not. These observations strongly
motivate us to develop a mechanism to avoid temporarily
congested servers during data transfers.

We investigate the issues related to designing a data
transfer protocol using Common Communication Inter-
face (CCI) [3, 32], that can fully exploit zero-copy, oper-
ating system (OS) bypass hardware when available and
fall back to sockets when it is not. In particular, we fo-
cus on optimizing an end-to-end data transfer, and inves-
tigate the interaction between applications, network pro-
tocols, and storage systems at both source and sink hosts.
We address various design issues for implementing data
transfer protocols such as buffer and queue management,
synchronization between worker threads, parallelization
of remote memory access (RMA) transfers, and I/O op-
timizations on storage systems. With these design con-
siderations, we develop a Layout-Aware Data Scheduler
(LADS).

In this paper, we present LADS, a bulk data movement
framework for use between PFS which uses the CCI in-
terface for communication. Our primary contribution is
that LADS uses the physical view of files, instead of a log-
ical view. Traditional file transfer tools employ a logical
view of files, regardless of how the underlying objects are
distributed within the PFS. LADS, on the other hand, un-
derstands the physical layout of files in which (i) files are
composed of data objects, (ii) the set of storage targets
that hold the objects, and (iii) the topology of the storage
servers and targets.1 LADS aligns all reads and writes
to the underlying object size within the PFS. Moreover,
LADS allows out-of-order object transfers.

Our focus on the objects, rather than on the files, al-

1We use Lustre terminology for object storage servers (OSS) and
targets (OST). An OST manages a single device. A single Lustre OSS
manages one or more OSTs.

lows us to implement layout-aware I/O scheduling algo-
rithms. With this, we can minimize the stalled I/O times
due to congested storage targets by avoiding the con-
gested servers and focusing on idle servers. All other ex-
isting data transfer tools [12, 2, 28, 26, 29] implicitly syn-
chronize per file and focus exclusively on the servers that
store that one file whether they are busy or not. We also
propose a congestion-aware I/O scheduling algorithm,
which can increase the data processing rate per thread,
leading to a higher data transfer rate. We also implement
and evaluate the ideas of hierarchical data transfer us-
ing non-volatile memory (NVM) devices. Especially, in
an environment where I/O loads on storage dynamically
vary, there can be a slow storage target due to congestion.

We conduct a comprehensive evaluation for our pro-
posed ideas using a file size distribution based on a snap-
shot of one of the file systems of Spider (the previous
file system) at ORNL. We compare the performance of
our framework with a widely used data transfer program,
bbcp [12]. Specifically, in our evaluation with the real
file distribution based workload, we observe that our
framework yields a 4-5 times higher data transfer rate
than bbcp when using eight threads on a node. Also,
we find that with a small amount of SSD, LADS can im-
prove further the data transfer rate by 37% over a base-
line without SSD buffering and far more cost-effectively
than provisioning additional DRAM.

2 Background
We first introduce our target environment for DOE data
movement frameworks - the data life cycle, network en-
vironment, and data storage infrastructure. Next, we de-
fine I/O optimization problems at a multi-level hierarchy
in the PFS.

2.1 Target Environment
DOE has large HPC systems (e.g. OLCF’s Titan and
ALCF’s Mira) and scientific instruments (e.g. ORNL’s
SNS and ANL’s APS) which generate large, bulk, syn-
chronous I/O. The HPC systems run simulations that
have intense computational phases, followed by inter-
process communication, and periodically by I/O to
checkpoint state or save an output file. The simulation’s
startup is dominated by a read phase to retrieve the in-
put files as well as the application binary and libraries.
The instruments, on the other hand, do not have a read
phase and strictly have write workloads that capture mea-
surements. These measurements are triggered by a peri-
odic event such as an accelerated particle hitting a tar-
get which generates various energies and sub-particles.
The instrument’s detectors will capture these events and
it must move the data off the device before the next event.

In order to store this data, these systems typically have
large PFS connected by a high-performance network.

2



O
S

S
O

S
T

 (
L

U
N

)

..
.

λS0

λT6NλT0

μT0

μTN

μT2N

μT6N

..
.

λS1

λT6N+1λT1

μT1

μTN+1

μT2N+1

μT6N+1

..
.

λS2

λT6N+2λT2

μT2

μTN+2

μT2N+2

μT6N+2

..
.

λSN-1

λT7N-1λTN-1

μTN-1

μT2N-1

μT3N-1

μT7N-1

...μS0 μS1 μS2 μSN-1

Eos

Cray 

XC30

Rhea

Analysis

Cluster

Everest

Viz

Cluster

Data 

Transfer

Nodes

Scalable I/O Network (SION)

Titan Cray XK7

N = 288. Each OSS has 7 OSTs. Each OST is a RAID6 set of 8+2 disks.

Figure 1: OLCF center-wide PFS and clients

Some sites, such as OLCF, have a center-wide file system
accessible by multiple HPC systems as well as by analy-
sis and visualization clusters. In this case, the HPC sys-
tems are the primary users and the clusters are secondary
users. Given the cost to run these larger resources, one
would not want to negatively impact the HPC system’s
performance due to I/O by the secondary users.

Lastly, most of the scientists using these systems are
not located within the facility. Most are from other DOE
sites, universities, as well as some commercial entities.
They eventually want to move the data back to their insti-
tutions in order to further analyze the data. Each site has
several data transfer nodes (DTN) that mount the PFS
and are connected to DOE’s Energy Sciences Network
(ESnet). ESnet currently provides 100 Gb/s connectivity
to over 40 DOE institutions as well as peering with In-
ternet2 and commercial backbone providers. The DTNs
currently have 10 Gb/s NICs but will migrate to 40 Gb/s
NICs in the near future. As with the analysis and visu-
alization clusters, use of the DTNs should not negatively
impact the I/O of the large HPC systems.

2.2 Spider Storage Systems for Titan
Spider II is OLCF’s second generation, center-wide, Lus-
tre system. Its primary client is Titan [24, 18], currently
ranked second in the Top500. Titan has 18,688 compute
nodes, which mount Spider directly. Titan’s I/O traf-
fic passes through 432 I/O nodes, which act as Lustre
Networking (LNET) routers between Titan’s Cray Gem-
ini network and OLCF’s InfiniBandTM(IB) Scalable I/O
Network (SION). In addition to Titan, Spider is shared
with Eos, a 744 node Cray XC30 system, analysis and
visualization clusters, and DTNs. Figure 1 provides an
overview of Spider. Currently the file system is acces-
sible via two name-spaces, atlas1 and atlas2, for load-
balancing and capacity management purposes. Each
namespace has 144 OSSes, which manage seven OSTs

each, for a total of 1,008 OSTs per namespace. Each
OST represents a RAID-6 set of ten (8+2) disks.

2.3 Problem Definition: I/O Optimization
I/O Contention and Mitigation: A storage server ex-
periences transient congestion when competing I/O re-
quests exceed the capabilities of that server. During these
periods, the time to service each new request increases.
This is a common occurrence within a PFS when either
a large application enters its I/O phase (e.g. writing a
checkpoint, reading shared libraries on startup) or multi-
ple applications are accessing files co-located on a sub-
set of OSTs. Disk rebuild processes of a RAID array
can also delay I/O services. OS caching and application-
level buffering can sometimes mask the congestion for
many applications, but data movement tools do not bene-
fit from these techniques. If the congestion occurs on the
source side of the transfer, the source’s network buffers
will drain and eventually stall. On the other hand, con-
gestion at the sink will cause the buffers of both the
sink and then the source to fill, eventually stalling the
I/O threads at the source. We refer to threads stalled
on I/O accesses to congested OSTs as stalled I/Os. We
try to lower the storage occupancy rate of stalled I/Os
in order to minimize the impact of storage congestion
on the overall I/O performance using three techniques:
Layout-aware I/O Scheduling, OST congestion-aware
I/O scheduling, and object caching on SSDs.

Two-level bottlenecks: Figure 1 illustrates the poten-
tial places for I/O bottlenecks when accessing OSTs via
OSSes in Lustre file systems. For OSSm, if the arrival
rate (λOSSm) is greater than its service rate (µOSSm), the
server will start to overflow, becoming the bottleneck and
its incoming service will be delayed. This can happen
if the number of OSTs connected to an OSS is greater
than what the network connection to the OSS can han-
dle. To avoid this case, OLCF provisions the number of
OSTs per OSS such that µOSSm > ∑

k
j=1 µOSSn+ j. Even

if λOSSm is smaller than µOSSm, OSTs can become the
bottleneck. For example, if λOST j is greater than µOST j,
OSTj becomes the bottleneck. Therefore, LADS has to
avoid both server and target bottlenecks in a way that it
does not assign I/O threads to the overloaded server or
target.

Lustre Configuration Impacts I/O Contention: In
Lustre, a file’s data is stored in a set of objects. The un-
derlying transfers are 1 MB aligned on 1 MB boundaries.
If the stripe count is four, then the first object holds off-
sets 0, 4 MB, 8 MB, etc. Each object is stored on a sep-
arate OST. The mapping of the OSTs to the OSSes can
impact how a file’s object are stored. Figure 2 shows how
the OST-to-OSS mapping can physically impact a file’s
object placement. The default mapping is to assign OSTs
sequentially to OSSes. For a file with a stripe count of

3



OSS1

T1 T2 T3 T4

OSS2

T5 T6 T7 T8

OSS3

T9 T10 T11 T12

OSS1

T1 T4 T7 T10

OSS2

T2 T5 T8 T11

OSS3

T3 T6 T9 T12

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12

O1 O2 O3

O4 O5 O6

O7 O8 O9

O10 O11 O12

O1 O2 O3

O4

O7

O10

O5

O8

O11

O6

O9

O12

File A

Default Lustre topology maps consecutive storage targets (OST) to storage server (OSS)

A file with a stripe count of three is striped over 
three OSTs connected to the same OSS. 

OLCF Lustre topology stripes storage targets (OST) over all storage servers (OSS)

A file with a stripe 
count of three is striped 
over three OSTs 
connected to three 
different OSSes.

Figure 2: File striping in Lustre.

three and four OSTs per OSS, the objects will be stored
on three OSTs connected to one OSS. OLCF, on the other
hand, uses a mapping such that OSTs are assigned round-
robin over all the OSSes. In this example, a file with a
stripe count of three is assigned to three OSTs and each
OST is connected to a separate OSS.

Depending on the choices of storage and network-
ing hardware, the OSS or the OSTs may be the bottle-
neck. To improve the I/O throughput by minimizing con-
tention, the higher layers need this information.

Logical versus Physical File View: Traditional file
transfer tools [12, 2] rely on the logical view of files
(called File-based approach), which ignores the under-
lying file system architecture. An I/O thread can be as-
signed to a complete file, and it should work on the file
until the entire file is read or written. If more than one
thread is used, these threads might compete for the same
OSS or OST, causing server or disk contention respec-
tively. Such contention can result in the slow-down of
applications.

To demonstrate how the File-based approach, which is
unaware of the underlying file system layout, contributes
to the problem of I/O contention in the PFS, we use a
simple example in Figure 3, in which we assume each
OST can service an object at a time within a fixed service
time. In the figure, Filea is striped over OST2 and OST3
and Fileb is striped over OST1 and OST3. In Figure 3(a),
Thread 1 (T1) and T2 attempt to read Filea and Fileb at
the same time respectively. T1 and T2 read different files,
however, T1 and T2 can interfere each other on accessing
the same OST. Based on a dilation factor model [16],
as T1 and T2 complete OST3 , T1 and T2 can slow down
by 25% and 12.5% respectively. In Figure 3(a), all four
threads access different logical regions of the same Fileb,
however, as T1 and T2 complete for OST1, and T3 and

T3 T4

1

T1

2
1

T2

2
3
4

1

T1

2

1

T2

2

3
4

1

T1

2 3 4

T2 T3 T4

1

T1

2 3 4

T2

Filea Fileb

OST1 OST2 OST3 OST4

(a)

(b)

A unit time of processing an object

Figure 3: Illustration of slow-down of each job(T) due to OST
contention when accessing the same resource at the same time.

T4 complete for OST3. Thus, each thread slows down
by 50%. The results of this example indicates that OST
contention may increase due the lack of understanding of
the physical layout of the file’s objects.

In contrast, LADS, views the entire workload from a
physical point of view based on the underlying file sys-
tem architecture. LADS consider the entire workload of
O objects, where O is all of the objects in the N total
files, and each object represents one transfer MTU of
data. It can also exploit the underlying storage architec-
ture, and can use the file layout information for schedul-
ing accesses of OSTs. Thus it takes into account the S
servers and T targets that hold the O objects. We then
load-balance based on the physical distribution of the ob-
jects. A thread can be assigned to an object of any file on
any OST without requiring that all objects of a particular
file be transferred before objects of another file.

3 Design of LADS
LADS is motivated to answer a simple question: how can
we exploit the underlying storage architecture to mini-
mize I/O contention at the data source and sink? In this
section, we describe our design rational behind the LADS
implementation, system architecture, and several key de-
sign techniques using a physical view of files on the un-
derlying file system architecture.

We have implemented a data transfer framework with
the following main design goals – (i) improved par-
allelism, (ii) network portability, and (iii) congestion-
aware scheduling. Our design tries to maximize paral-
lelism by overlapping as many operations as possible, us-
ing use a combined threading and an event-driven model.

3.1 LADS Overview
System Architecture: Figure 4 provides an overview
of our design and implementation for I/O sourcing and
sinking for a PFS. LADS is composed of the follwo-
ing threads: The Master thread maintains transfer state,
while I/O threads read and write objects of files from and
to the PFS. The Comm thread is in charge of all data
transfers between source and sink. In our implemen-
tation, there is one Master thread, a configurable num-

4



I/O C

Filea

LADS

Client

RMA Buffer in DRAM

Fileb

M

Endpoint

(CCI)

Endpoint

(CCI)

Source

core

Layout-

aware

Congestion-

aware

NVRAM Object 
Caching

LADS

Server

Layout-

aware

Congestion-

aware

NVRAM Object 
Caching

Object Cache 

on NVM

NVM

(SSD)

RMA buffer manager

Thread Scheduler

RMA buffer manager

Thread Scheduler

NVM

(SSD)

Sink

I/O CM

core

Figure 4: An architecture overview.

ber of I/O threads, and one Comm thread. Because the
I/O threads use blocking calls, we allow more threads
than cores (i.e. over-subscription). Since we can over-
subscribe the cores, the Master and I/O threads block
when idle or waiting for a resource. The Comm thread
never blocks and always tries to progress communica-
tion. The Comm thread generates most of the events that
drive the application. If the Comm thread needs a re-
source (e.g. a buffer) which it cannot get immediately, it
will queue the request on the Master’s queue and wake
the Master.

Several I/O optimization techniques are implemented
in LADS. In the figure, the layout-aware technique can
optimize the unit size of the data accessed by the I/O
threads to object size in the underlying file systems, and
improved the stalled I/O time when the server is con-
gested. The OST congestion-aware algorithm can avoid
the congested servers. NVM can be used as an extended
memory region, when the RMA buffer full using the ob-
ject caching technique. The Comm threads at source and
sink, using CCI, pin memory regions for RMA transfers
between the Comm threads at source and sink. At the
source, if the RMA buffer is full, the Master will notify
I/O threads to use the NVM buffer instead of directly
copying objects from the PFS into the RMA buffer, thus,
it allows pre-loading on the extended memory regions
on the NVM. At sink, if the RMA buffer is full, likewise,
the extended NVM regions can be used as an interme-
diate buffer before the PFS to avoid stalling the network
transfers.

3.2 Data Structure Overview
We organized the various data structures to minimize
false sharing by the various threads. The global state in-
cludes a lock which is used to synchronize the threads at
startup and shutdown as well as to manage the number
of files opened and completed. Other locks are resource
specific. There are two wait queues, one for the Master
and the other for the I/O threads. When using the SSD to
provide additional buffering, it has a wait queue as well.

The Master and I/O thread structures also have a waiter
structure that includes their condition variable and an en-
try for the wait queue. The Master and Comm threads
have a work queue implemented using a doubly-linked
list. The I/O threads will pull requests off of the OST
work queues (described below).

We manage the open files using the GNU tree search
interface, which is implemented as a red-black tree. The
tree has its own mutex and counter. We manage the RMA
and SSD buffers using bitmaps that indicate which off-
sets are available (the offset is the index in the bitmap
multiplied by the object size), an array of contexts (used
to store block requests using that buffer), and a mu-
tex. Lastly, because our implementation currently targets
Lustre, we have an array of OST pointers. Each OST has
a work queue, mutex, queue count, and busy flag. The
number of OST queues is determined by the number of
OSTs in the PFS. The design can easily be extended to
other PFS.

To avoid threads spinning on mutexes as well as “thun-
dering herds” [14] when trying to acquire a resource, we
use per-resource wait queues consisting of a linked list,
a mutex, and a per-thread condition variable. If the re-
source is not available, the waiter will acquire the lock,
enqueue itself on the resource’s wait list, and then block
on its own condition variable. When another user wants
to release the resource, it acquires the lock, dequeues
the first waiter, releases the lock, and signals the waiter’s
condition variable. This ensures fairness and avoids spin-
ning and thundering herds.

3.3 Object Transfer Protocol
For transferring files, first the source and sink processes
(hereafter simply source and sink) need to initialize some
state, spawn threads, and exchange some information.
The initial state includes a global lock used to synchro-
nize at startup, the various wait queues, the file tree to
manage open files, the OST work queues, and the struc-
ture for managing access to the RMA buffer. The Master
thread initializes its work queue, its wait queue, and the
wait queue for I/O threads.

The Comm thread opens a CCI endpoint (send and
receive queues, completion queue), allocates its RMA
buffer and registers it with CCI, and opens a connec-
tion to the remote peer. The source Comm thread sends
its maximum object size, number of objects in the RMA
buffer, and the memory handle for the RMA buffer. The
sink Comm thread accepts the connection request, which
triggers the CCI connect event on the source. The I/O
threads simply wait for the other threads.

After the CCI initialization step, data transfer will fol-
low the steps as shown in Figure 5 at source and sink.

Step 1. The operations to exchange a file are shown
in Figure 5. For each file, (i) the source’s master will

5



start_new_file(i) NEW_FILE

FILE_ID

queue_block(j)

reserve_id(j)

read_block(j)

block_ready(j)

NEW_BLOCK

BLOCK_DONE

release_id(j)

block_done(j)

queue_block(j+1)

reserve_id(j+1)

read_block(j+1)

block_ready(j+1)
NEW_BLOCK

BLOCK_DONE

release_id(j+1)

block_done(j+1)

delete_block(j)

delete_block(j+1)

Master I/O I/O I/O I/O Comm

NEW_FILE

FILE_ID

Comm Master

handle_new_file(i)

I/O I/O I/O I/O 

NEW_BLOCK

reserve_id(k)
cci_rma(k)

BLOCK_DONE
write_block(k)
release_id(k)

NEW_BLOCK

reserve_id(l)
cci_rma(l)

BLOCK_DONE
write_block(l)
release_id(l)

queue_block(k)

queue_block(l)

(a) Source (b) Sink

Figure 5: Thread communication diagrams at source and sink hosts.

open the file, determine the file’s length and layout (i.e.
the size of the stored object and on which OSTs they
are located), and generate a NEW FILE request and en-
queue that request on the Comm thread’s work queue.
(ii) The Comm thread generates NEW BLOCK requests for
each stored object and enqueue that request on the appro-
priate OSTs’ work queues. (iii) The Comm thread will
marshal the NEW FILE request and send it to the sink.

Step 2. At sink, the Comm thread will receive the
NEW FILE request and enqueue it on the Master’s work
queue and wake it up. The Master will open the file, add
the file descriptor to the request, change the request type
to FILE ID and queue the request on the Comm’s work
queue. The Comm thread will dequeue it and send it to
the source.

Step 3. At source, when the Comm thread receives
the FILE ID message, it will wake up N I/O threads,
where N is the number of OSTs over which the file is
striped. An I/O thread first reserves a buffer registered
with CCI for RMA. It then determines which OST queue
it should access and then dequeues the first NEW BLOCK

request. It uses pread() to read the data into the RMA
buffer. When the read completes, it enqueues the request
on the Comm thread’s work queue. The Comm thread
marshals the request and sends it to the sink. Note, the
source’s Comm thread’s work queue will have intermin-
gled NEW FILE and NEW BLOCK requests thus overlap-
ping file id exchange and block requests.

Step 4. At sink, the Comm thread receives the request
and attempts to reserve a RMA buffer. If successful, it
initiates a RMA Read of the data. If not, it enqueues
the request on the Master’s work queue and wakes the
Master. The Master will sleep on the RMA buffer’s wait

queue until a buffer is released. It then will queue the
request on the Comm’s queue, which will then issue the
RMA Read.

Step 5. At sink, when the RMA Read completes, it
sends a BLOCK DONE message back to the source. The
sink’s Comm thread determines the appropriate OST by
the block’s file offset and queues it on the OST’s work
queue. It then wakes an I/O thread. The I/O thread looks
for the next OST to service, dequeues a request, calls
pwrite() to write the data to disk. When the write com-
pletes, it releases the RMA buffer so the Comm thread
can initiate another RMA Read.

Step 6. When the source’s Comm thread receives the
BLOCK DONE message, it releases the RMA buffer and
wakes an I/O thread. This pattern continues until all of
the file’s blocks have been transferred. When all blocks
have been written, the source sends a FILE DONE mes-
sage and closes the file. When the sink receives that mes-
sage, it too closes the file.

3.4 Scheduling
Layout-aware Scheduling: In a PFS, the file is stored as
a collection of objects and stored across multiple servers
to improve overall I/O throughput. Best practices for ac-
cessing a PFS is for the application to issue large requests
in order to reap the benefits of parallel accesses across
many servers. A single thread accessing a file will re-
quest N objects and can read M objects (assuming M <
N, and the file is striped over M servers) in parallel at
once. If one of the servers is congested, however, the
request duration is determined by the slowest server. So
the throughput of the request for N objects is determined
by the throughput of objects from the congested server.

6



In contract, in our approach, instead of a single thread
requesting N objects, we have N threads request one ob-
ject each from separate servers, because we align all I/O
accesses to object boundaries. If one of the requests is
delayed by a congested server, the N-1 threads are free
to issue new requests to other servers. By the time that
the request to the slow server completes, we may be able
to retrieve more than N objects.

While the aligned-access technique aims to reduce the
I/O stall times and improve overall throughput, it does
not specify to which servers to send requests. Most, if
not all, data movement tools attempt to move one file at
a time (e.g. bbcp, XDD) or a small subset (e.g. GridFTP)
at a time. In a PFS, however, a single file is striped over
N servers. In the case of the Atlas file system at ORNL,
the default is four servers. Although the file system may
have hundreds of storage servers, most data movement
tools will access a very small subset of them at a time.
If one of those servers is congested, overall performance
will suffer during the congested period.

Congestion-aware Scheduling: For congestion-
aware I/O scheduling, we attempt to avoid intermittently
congested storage servers. Given a set of files, we deter-
mine where all of the objects reside in the case of reading
at the source or determine which servers to stripe the ob-
jects over when writing at the sink. We then schedule
the accesses based the location of the objects, not based
on the file. We enqueue a request for a specific object
on a particular OST’s queue. The I/O threads then se-
lect a queue in a round-robin fashion and dequeue the
first request. If another thread is accessing an OST, the
other threads skip that queue and move on to the next.
If one OST is congested, a thread may stall, but the
other threads are free to move on to other, non-congested
servers. This is important in a HPC facility like ORNL.
The PFS’s primary user is the HPC system. We do not
want to tune the data movement tools such that they re-
duce the performance of the HPC system, which is a
very expensive resource. Our goal is to maximize per-
formance while using the lightest touch on the PFS.

The basic per-OST queues and simple round-robin
scheduling over all the OSTs is able to improve overall
I/O performance. We then extend layout-aware schedul-
ing to be congestion-aware by implementing a heuris-
tic algorithm to detect and avoid the congested OSTs.
The algorithm can make proactive decisions for selecting
storage targets that next I/O threads will work on. The al-
gorithm uses a threshold-based throttling mechanism to
further lessen our impact on the HPC system’s use of
the PFS. When reading at the source, for example, an
I/O thread reads a object from its appropriate server and
records the read time, and computes an average of multi-
ple object read times during a pre-set time window time
(W ). If the average read time during W is greater than

the pre-set threshold value (T ), then it marks the server
as congested. The algorithm tells the threads that they
should skip congested servers M times. Consequently,
the I/O threads avoid the congested servers for a short
amount of time, leading to the reduced I/O stall times.

3.5 Object Caching on SSDs
In the case when the sink is experiencing wide-spread
congestion (i.e. every I/O thread is accessing a con-
gested server), newly arriving objects will quickly fill
the RMA buffer. The sink will then stall the pipeline of
RMA Read requests from the source causing the source’s
RMA buffer to fill. Once full, the source’s I/O threads
will stall because they have no buffers in which to read.
To mitigate this, we investigate using a fast NVM de-
vice to extend the buffer space available for reading at
the source. Several efforts have introduced new inter-
faces to efficiently use NVM as an extended memory re-
gion [4, 34, 9, 23]. In this work, we specifically use the
NVMalloc library [34] to build a NVM based, intermedi-
ate buffer pool at the source using fast PCIe-based COTS
SSDs, where we create a log-file memory-mapped using
a mmap() system call. The key use of NVM buffer pool
is to continue reading objects when the RMA buffer is
full at source.

In our implementation, when servicing a new request,
an I/O thread tries to reserve a RMA buffer. If one is not
available, it attempts to reserve one in the SSD buffer.
If successful, it reads into the SSD buffer, enqueues the
request on a SSD queue, and wakes the SSD thread. The
SSD thread then attempts to acquire a RMA buffer. If
not available, it sleeps waiting for a RMA buffer to be
released. When a buffer is released, it wakes, reserves
the RMA buffer, copies the data to the RMA buffer, and
enqueues the request on the Comm thread’s work queue.
Lastly, the Comm thread marshals the NEW BLOCK and
sends it off to the sink.

We could apply the same idea of source-side SSD
buffering algorithm for sink-side SSD buffering, how-
ever, as we will discuss in the evaluation section in detail,
sink-side buffering does little to improve data transfer
rates, when buffered I/Os are allowed. Typically writes
are buffered I/Os. The key for the SSD buffering is to
decide when to use the SSD buffer or not. When using
buffered I/Os at sink, our algorithm can not account for
the effect of OS’s buffer cache and fails to correctly de-
tect congested servers. Using direct I/O for the writes
is possible and would allow our algorithm to detect con-
gested servers, but direct I/O performs much worse and
we chose not to use it for sink-side SSD buffering.

The copy from SSD buffer to RMA buffer is needed
when using hardware that supports zero-copy RMA be-
cause the memory must be pinned and registered with
the hardware and we cannot register the mapped SSD

7



file. Our design does this even when the hardware does
not provide RMA support (i.e. when using sockets un-
derneath CCI). We could detect this scenario and avoid
the copy by sending directly from the SSD buffer, but we
do not implement at this time. Also, should future inter-
connects support RMA from NVM, we could avoid the
copy as well.

4 Evaluation
For the evaluation of LADS, we use two experimental en-
vironments, without and with server congestion, and our
production environment. First, we show the results of
LADS without congested servers. We explore the effec-
tiveness of object scheduling in LADS versus file based
scheduling (e.g., bbcp). We then explore the perfor-
mance of LADS by varying RMA buffer size and scaling
performance. Second, we study the impact of server con-
gestion on LADS and we propose two mitigating strate-
gies, congestion-aware I/O scheduling and SSD buffer-
ing. Lastly, we show the DTN to DTN evaluation with
ORNL production systems.

4.1 Experimental Systems
Implementation: LADS has been implemented using 4
K lines of C code using Pthreads. We used CCI, which is
an open-source network abstraction layer, downloadable
from CCI-Forum [6]. The communication model fol-
lows a client-server model. On the server side, the LADS
server daemon has to be run before the LADS client starts
to transfer data.

Test-bed: In this setup, we used a private testbed
with two nodes (source and sink) connected by Infini-
Band (IB) QDR (40 Gb/s). The nodes used the IB net-
work to communicate with each other and the disk ar-
rays. We used two Intel R© Xeon R© CPU E5-2609 @ 2.40
GHz servers with eight cores, 256 GB DRAM, and two
node-local Fusion-io Duo SSDs [10] for data transfer
nodes (source and sink hosts) running with Linux kernel
2.6.32-358.23.2. Both the source and sink nodes have
separate Lustre file systems with one OSS server, one
MDS server, and 32 OSTs, mounted over 32 SAS 10K
RPM 1TB drives each. For each file systems, we created
32 logical volume drives on top of the drives to have each
disk to become an OST.

To fairly evaluate our implementation framework,
we ensured that storage server bandwidth is not over-
provisioned with respect to network bandwidth between
those source and sink servers (i.e., the network would
not be the bottleneck). Figure 6 shows the results on
comparing network and storage I/O bandwidths in our
test-bed. For storage bandwidth, we ran block level I/O
benchmarks [21] on a host to 32 disk volumes in paral-
lel with 1 MB sequential I/O streams on each benchmark
with the highest queue depth of 16. The IB bandwidth

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 8 32 128 512 2K 8K 16K

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

Max Seq I/O BW: 
2.3GB/s

IB Bandwidth

Figure 6: IB vs. storage bandwidth.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

0-2KB

4KB-8KB

16KB-32KB

64KB-128KB

256KB-512KB

1M
B-2M

B

4M
B-8M

B

16M
B-32M

B

64M
B-128M

B

256M
B-512M

B

1G
B-2G

B

4G
B-8G

B

16G
B-32G

B

64G
B-128G

B

256G
B-512G

B

1TB-2TB

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

F
ile

 C
o
u
n
t

A
g
g
re

g
a
te

 S
iz

e
 (

T
B

)

Count
Size (TB)

Figure 7: File size distribution.

increases as the message size increases, and it reaches
about 3.2 GB/s, whereas the I/O bandwidth is measured
around 2.3 GB/s at the most. This testbed allowed us to
replicate the temporal congestion of the disks to provide
fair comparisons between LADS and bbcp.

Production system: We have also tested LADS
and bbcp between our production Data Transfer Nodes
(DTNs), connected to two separate Lustre file systems at
ORNL. Each DTN is connected to the OLCF backbone
network via a QDR or FDR IB connection to the OLCF’s
Scalable I/O Network where Atlas’ Lustre file systems
are mounted (Refer to Figure 1). In our evaluation, we
measured the data transfer rate from atlas1 to atlas2 via
DTN nodes with LADS and bbcp. In order to minimize
the OS page-cache effect, we cleared out OS page cache
before each measurement at both test-bed and produc-
tion system.

Workloads: For a realistic performance comparison,
we used a file system snapshot taken for a widow3 parti-
tion in the Spider-I file systems hosted by ORNL in 2013
to determine file set sizes. Figure 7 plots a file size distri-
bution in terms of the number of files and the aggregate
size of files. We can observe that 90.35% of the files are
less than 4 MB and 86.76% are less than 1 MB. Less than
10% of the files are greater than 4 MB. On the other hand,
the larger files occupy most of the file system space. For
the purpose of our evaluation, we used two representa-
tive file sizes to have two file groups; one for small files
with 10,000 1MB files, and the other for big files with
100 1GB files.

4.2 Scheduling Objects versus Files in an
Uncongested Environment

In this section, we show the effectiveness of object

8



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8

T
ra

n
s
fe

r 
R

a
te

 (
M

B
/s

)

io threads(LADS)/streams(bbcp)(#)

100 x 1GB File Transfer

LADS
bbcp

 0

 50

 100

 150

 200

 250

 300

1 2 4 8

T
ra

n
s
fe

r 
R

a
te

 (
M

B
/s

)

io threads(LADS)/streams(bbcp)(#)

10,000 x 1MB File Transfer

LADS
bbcp

(a) Big Files (b) Small Files

Figure 8: Performance comparisons for LADS and bbcp. In
bbcp, 10 MB is used for TCP window size.

scheduling in LADS versus file-based scheduling used by
bbcp in a controlled, uncongested environment. This sec-
tion focuses only on the difference between object versus
file scheduling; Sections 4.3 and 4.4 will examine two
mitigation strategies for congested environments.

Within our controlled test-bed environment, we evalu-
ate the performance of LADS for big and small data sets,
and compare it against bbcp. In both sets, the stripe count
is one (i.e. each file is stored in 1 MB objects on a sin-
gle OST). We note that our tests with a higher file stripe
count are shown in the results of production system in
Section 4.5.

Figures 8 and 9 show the results of LADS and bbcp
for these workloads. We had multiple runs for each test,
however the variability was very small. Both experi-
ments were tested while increasing the number of threads
on each application. In LADS, we can vary the number
of I/O threads, which can maximize CPU utilization on
the data transfer node, but use a single Comm thread.
On these hosts, LADS uses CCI’s Verbs transport, which
natively uses the underlying InfiniBand interconnect. In
bbcp, we can only tune the number of TCP/IP streams for
a performance improvement (bbcp always uses a single
I/O thread). The streams ran over the same InfiniBand in-
terconnect, but used the IPoIB interface which supports
traditional sockets. Using Netperf, we measured IPoIB
throughput at almost 1 GB/s. A newer OFED release
should provide higher sockets performance, but we en-
sured that the network was never the bottleneck for these
tests. In bbcp, we calculated the TCP window size (W )
using the formula for bandwidth-delay product: using
ping time (Tping) and a network bandwidth (Bnet ) as fol-
lows: W = Tping×Bnet . We used 10 MB for a TCP win-
dow size in our evaluation setup. We have also tested
bbcp by varying the block size, however we have seen
little performance difference between 1 MB and 4 MB,
so we show the results with a block size of 1 MB for bbcp
tests.

Performance comparison for object scheduling of
LADS and file-based scheduling of bbcp: In Fig-
ure 8(a)(b), we see that LADS shows almost a perfect

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8
 0

 200

 400

 600

 800

 1000

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

M
e

m
 U

s
a

g
e

 (
M

B
)

io threads(LADS) (#)

100 x 1GB File Transfer

zs-src-cpu
zs-sink-cpu
zs-src-mem

zs-sink-mem

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8
 0

 200

 400

 600

 800

 1000

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

M
e

m
 U

s
a

g
e

 (
M

B
)

io threads(LADS) (#)

10,000 x 1MB File Transfer

lads-src-cpu
lads-sink-cpu
lads-src-mem

lads-sink-mem

(a) Big Files (b) Small Files

Figure 9: Resource utilization comparisons for LADS. CPU
utilization is 800, when all cores are fully utilized.

linear scaling in terms of data transfer rate with respect
to the increased number of I/O threads, whereas there is
little improvement in bbcp with respect to the increased
number of TCP/IP streams. bbcp is implemented using a
file-based data transfer protocol in which, files are trans-
ferred one by one, and multiple TCP streams operate on
the same file. Therefore, the bottleneck is determined by
how wide the PFS stripes the file. We also found that
with bbcp multiple TCP/IP streams will only offer a per-
formance gain when a network speed is moderately slow
compared with I/O bandwidth of the storage. Overall, we
observe that LADS significantly outperforms bbcp for all
test cases in Figure 8, except for the results when LADS
transfer uses one I/O thread for a big file set. In this case,
we believe that bbcp is benefiting from hardware-level
read-ahead in our testbed. LADS did not benefit from it
because the round-robin access of the I/O queues might
mean that we are accessing an object from a different
file the next time we visit this OST and lose the benefit
of read-ahead. OLCF production systems disable read-
ahead for this reason.

In LADS, we observe the maximum throughput at
around 400-450MB/s for the experiment of a big data set,
which is reasonable based on our test-bed configuration.
The block-level throughput for all 16 disks is 2.3GB/s,
the file system overhead reduces that by about 40% to
1.3-1.4GB/s. We tested with up to eight threads reducing
the optimum to 650-700MB/s. Given thread synchro-
nization overhead, 400-500MB/s is reasonable but im-
provement is still possible.

Resource utilization in LADS: LADS uses DIRECT

IO for the source’s read operations to minimize the re-
source utilization for CPU and memory, while the sink
writes using buffered I/O. As we see from Figure 9(a)(b),
LADS moderately uses system resources, and there is
only a slight increase in CPU utilization as the number
of I/O threads increases. The more I/O threads involve
the more meta data service requests to Lustre file system
and more I/O. Overall, LADS take advantage of the In-
finiBand NIC’s offloading abilities and manages well the
system resources; CPU utilization stays relatively low
even at eight I/O threads. Memory usage never varies

9



2
4

8
16

32
64

0

100

200

300

400

500

1
8

Source RMA 

Buffer Size (MB)

D
a

ta
 T

ra
n

s
fe

r 
R

a
te

 (
M

B
/s

)

Sink RMA Buffer 

Size (MB)

0-100 100-200 200-300

300-400 400-500

1 2 4 8 16320

50

100

150

200

250

1 2 4 8

Source RMA 

Buffer Size (MB)
D

a
ta

 T
ra

n
s
fe

r 
R

a
te

 (
M

B
/s

)

Sink RMA Buffer 

Size (MB)

0-50 50-100 100-150

(a) Big File Set (b) Small File Set

Figure 10: Impact of RMA buffer size on LADS.

and is almost constant at 280-300 MB. We used 256 MB
for RMA buffer at source and sink, which accounts for
the majority of memory usage.

On the contrary, in bbcp, we observe that CPU and
memory usages are very low. For example, for small file
workloads, when eight streams are used, their memory
usage and CPU utilization are less than 2 MB and 5%,
respectively. For big file workloads, with the same con-
figuration, bbcp’s memory usage and CPU utilization are
at most about 30MB and less than 40%, respectively. Not
surprisingly with bbcp’s file-based approach, disk I/Os
are the bottleneck so that the host resources cannot be
fully utilized.

Impact of RMA buffer size in LADS: All the exper-
iments in the preceding subsections were done by utiliz-
ing a large, fixed amount of DRAM (256 MB) for use
as RMA buffers at both the source and sink. Given that
DTNs are shared resources and multiple users may be
using them concurrently, we want to understand what
amount of buffering is necessary.

Figure 10 shows the impact of available RMA buffer
sizes at the source and sink on LADS. We ran each test
multiple times and again the variability was very small.
As expected, a larger RMA buffer at the source reduces
the waiting time for a slot in the RMA buffer by an
I/O thread, which improved data transfer rate from the
source. Similarly, a greater size of the RMA buffer at
sink can hold more data while I/O threads are busy with
writing blocks to OSTs, later reducing the time of an I/O
thread has to wait until data are ready to be written from
the RMA buffer. Interestingly, with the RMA buffer size
increasing, LADS’s performance does not always im-
prove. Specifically, we have the following observations:
(i) a few RMA buffer slots (a few Megabytes) at sink
are sufficient to reach the maximum data transfer rate,
and (ii) with the increased RMA buffer at source, LADS
performance improves. It is because at sink, we allow
buffered I/Os, thus writes to disks can be fast, whereas
at the source, disk read bandwidth is the bottleneck as
DIRECT I/Os are used for data read on the storage at

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t 

(M
B

/s
)

Number of Source Sink Pairs

LADS
bbcp

 0

 50

 100

 150

 200

 250

1 2 4 8 16

A
v
g

. 
P

e
r-

p
a

ir
 T

h
ro

u
g

h
p

u
t 

(M
B

/s
)

Number of Source Sink Pairs

LADS
bbcp

(a) Aggregate throughput (b) Per-pair throughput

Figure 11: Scaling Experiments.

source. It would be beneficial to let multiple I/O threads
read data blocks in parallel into the RMA buffer using
multiple slots in the RMA buffer. Therefore, it would be
more beneficial to add more RMA slots at the source to
improve the data read performance than to increase the
RMA buffer size at the sink. We also observe that from
the big data set test, a smaller RMA buffer size at sink
can be the bottleneck, which never happens in the small
data set test. We suspect it may be due to the fact that
the small files have a close() call after each object is
transferred which requires a round-trip to the meta-data
server, but we did not investigate further.

Evaluation of Scaling by LADS and bbcp: We stud-
ied scaling performance of LADS and bbcp by increasing
the number of source-sink instances. Many data facil-
ities provide multiple data transfer nodes, each mount-
ing the file system. For these experiments, we have
used the same big files workload. Figure 11 shows the
results when increasing the number of paired-instances
to sixteen. In Figure 11(a), we observe that LADS
outperforms bbcp in aggregate throughput as the num-
ber of paired-instances increases. At each number of
paired-instances, LADS outperforms bbcp by a signifi-
cant amount. However, Figure 11(b) shows that the av-
erage per-pair throughput for LADS experiences dimin-
ishing returns. bbcp, on the other hand, scales nearly lin-
early up to eight paired-instances, albeit at a lower level
than LADS, and then it too shows diminishing returns.
We believe that the competing LADS processes created
contention due to their uncoordinated accesses.

4.3 Congestion-aware I/O Scheduling in
Congested Environment

In the previous section, we showed the effectiveness of
object scheduling compared to file-based scheduling. In
this section, we show the effectiveness of a congestion-
aware scheduling algorithm on top of object scheduling
in LADS for variable I/O load environment on storage
systems.

Figure 12 shows the run time comparison results of
transferring a total of 100 GB of data in both a nor-
mal and storage-congested environment. We exe-

10



 0

 100

 200

 300

 400

 500

 600

N
o
rm

a
l,R

R
C

,R
R

C
,C

A
 (5

,1
0
0
)

C
,C

A
 (5

,2
0
0
)

C
,C

A
 (5

,4
0
0
)

C
,C

A
 (5

,8
0
0
)

C
,C

A
 (5

,1
6
0
0
)

C
,C

A
 (5

,3
2
0
0
)

C
,C

A
 (5

,6
4
0
0
)

C
,C

A
 (5

,1
2
8
0
0
)

C
,C

A
 (1

5
,3

2
0
0
)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)
Normal w/ RR

Congested w/ RR
Congested w/ CA

 0

 100

 200

 300

 400

 500

 600

N
o
rm

a
l,R

R
C

,R
R

C
,C

A
 (5

,1
0
0
)

C
,C

A
 (5

,2
0
0
)

C
,C

A
 (5

,4
0
0
)

C
,C

A
 (5

,8
0
0
)

C
,C

A
 (5

,1
6
0
0
)

C
,C

A
 (5

,3
2
0
0
)

C
,C

A
 (5

,6
4
0
0
)

C
,C

A
 (5

,1
2
8
0
0
)

C
,C

A
 (1

5
,3

2
0
0
)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Normal w/ RR
Congested w/ RR
Congested w/ CA

(a) Source congested (b) Sink congested

Figure 12: Comparing average run times of transferring 100 x
1 GB files under normal and congested conditions. Source and
sink processes are run with eight I/O threads.

cuted multiple runs for each test, however there was
very little variability in measurement between runs. In
the figure, “Normal” indicates when there are no con-
gested disks, “C” means a condition where there are
congested disks, and “RR” and “CA” represent Round
Robin and Congestion-Aware scheduling algorithms re-
spectively. In (A, B), A means a threshold to determine
if disks are congested, and B denotes a number of times
the I/O threads skip one or more disks. To simulate con-
gestion, we used a Linux I/O load generator which uses
libaio [21]. It generates sequential read requests to four
disks with an iteration of five seconds, issuing enough re-
quests to generate 310-350 MB/s of I/O. It runs 10 iter-
ations before it moves on to the next four disks. We had
the I/O load generator issue 4 MB requests with a queue
depth of four.

For Figure 12(a), we tested various parameter settings,
to see the effectiveness of our CA algorithm when the
source storage is partially in congestion. Overall, we
see that the CA performance can improve by 35% over
the RR performance when experiencing congestion. The
ranges of a performance improvement can be determined
in a function of the threshold, and the number of skips
over congested servers. We notice that if the threshold
value is set too large or if the number of skips for con-
gested servers to be set either too small or too large, the
algorithm likely makes false-positive decisions, negating
the performance gain from avoiding congested disks.

For Figure 12(b) shows the results for congestion at
the sink PFS. Overall, the performance impact is much
significantly higher than when source servers are con-
gested. Surprisingly, the congestion-aware scheduling is
almost never improving performance, showing execution
times as high as those obtained with the RR algorithm.
Irrespective of tuning parameter values, the run times
are quite random, mainly because our scheduling algo-
rithm failed to detect congested servers. The congestion-
aware algorithm measures I/O service time for each ob-
ject, but our use of buffered I/Os prevented it from ac-

curately measuring the OSTs’ actual level of congestion.
We confirmed from our evaluation that most of predic-
tions were false positives, often wrongly assigning I/O
threads to busy or overloaded OSTs.

We measured the throughput of bbcp for a congested
condition in the storage. The results are shown in Table 1
to compare against the results of LADS. We executed
multiple runs for each test, however there were very lit-
tle variability in measurement between runs. The same
test-scenarios is used for the LADS evaluation presented
in Figure 12. It is not surprising that LADS is faster than
bbcp in both normal and congested conditions. Interest-
ingly, we note that the bbcp run times when the sink is
congested are not much different from those under nor-
mal conditions, which is most likely due to combination
of the OS buffer cache and bbcp’s slower communication
throughput. It is obvious that buffered I/Os for writes
should have been able to hide disk write latency. On
the other hand, we observe that bbcp’s run time, when
the source is experiencing congestion, can increase by
19% over when normal condition. Moreover, bbcp’s use
of sockets incurs additional copies, user-to-kernel con-
text switches, as well as TCP/IP stack processing. The
slower network throughput masks the sink disk conges-
tion. LADS clearly benefits from utilizing zero-copy net-
works when available.

bbcp
Uncongested Congested (Side)

Condition Source Sink
Runtime 21m53s 26m11s 21m54s

Throughput (MB/s) 78 65 78

Table 1: Run times and throughput for bbcp under normal and
congested environment.

4.4 Source-based Buffering using Flash in
Congested Environment

In the previous subsection, we observed that LADS’ data
transfer throughput significantly drops when the sink is
overloaded. In this case, the source’s RMA buffer be-
comes full, which stalls the I/O threads from reading ad-
ditional objects. Therefore, we propose a source-based
buffering technique that uses flash-based storage. This
source-based SSD buffering utilizes available buffers on
flash, which are slower than DRAM yet faster than HDD,
to load ahead data blocks to be transferred.

To evaluate it, we slightly modified the overloading
workload as we used for Figure 12(b) by inserting ten
seconds of idleness between storage congestion periods.
During this congestion-free period at sink, source can
copy the buffered data from SSD buffer to network RMA
buffer. For a fair evaluation, the sink host is set to use
only 256 MB RMA buffer, and source and sink run eight
I/O threads. The source and sink do not employ the

11



 0

 50

 100

 150

 200

 250

 300

 350

(2
5
6
,0

)
(2

5
6
,2

5
6
)

(2
5
6
,5

1
2
)

(2
5
6
,1

0
2
4
)

(2
5
6
,2

0
4
8
)

(2
5
6
,3

0
7
2
)

(5
1
2
,0

)
(1

0
2
4
,0

)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Size: (src-DRAM,src-SSD)

256MB DRAM only
256MB DRAM w/ SSD

512MB DRAM only
1GB DRAM only

 0

 2

 4

 6

 8

 10

 12

 14

(2
5
6
,0

)
(2

5
6
,2

5
6
)

(2
5
6
,5

1
2
)

(2
5
6
,1

0
2
4
)

(2
5
6
,2

0
4
8
)

(2
5
6
,3

0
7
2
)

(5
1
2
,0

)
(1

0
2
4
,0

)

N
o

rm
a

liz
e

d
 P

ri
c
e

 w
.r

.t
 (

2
5

6
,0

)/
(m

:f
=

1
0

0
:1

)
Size: (src-DRAM,src-SSD)

m:f=100:1
m:f=200:1
m:f=300:1

(a) Throughput (b) Price

Figure 13: Performance analysis of SSD-based object buffer-
ing at source. In (a), we showed average throughput with 95%
confidence intervals in error bars. In (b), m : f denotes the price
ratio between DRAM and Flash.

congestion-aware algorithm.
Figure 13(a) shows the results of the effectiveness of

the source-based buffering technique using flash. We ob-
serve that throughput increases as the available memory
for communications at the source increases. However,
referring to Figure 13(b), doubling the size of DRAM
is very expensive and the same throughput could be
achieved using cheaper flash memory.

4.5 Production Environment
DTN to DTN evaluations at ORNL: To evaluate large-
scale performance, we compare the times for transferring
a big data set from atlas1 to atlas2 via two DTNs avail-
able at ORNL using both LADS and bbcp. For this exper-
iment, both bbcp and LADS use sockets (in the context of
LADS, CCI is setup to use its TCP transport) over IPoIB
between the source and sink DTNs. The overhead of
CCI implementation is quite minimal [3] in which CCI
added 150-450 ns to small message latency and no per-
ceptible impact on throughput. On the Lustre Atlas
file systems, 1 MB stripe size and a stripe count of four
are the default. We ran the experiments twice for every
test and Table 2 shows the average throughput (in MB/s).
We also want to remind that the Atlas file systems do not
use SSDs for buffering.

Table 2 presents the data transfer times for LADS and
bbcp by increasing the number of threads. We observe
that throughput when using LADS increases with respect
to the increased number of I/O threads, whereas adding
streams does not help bbcp. With eight threads, LADS
shows 6.8 times higher data transfer rate than bbcp.
However, bbcp shows slightly higher in throughput than
LADS for a single thread. As we observed earlier, bbcp’s
single I/O thread issues larger reads that Lustre converts
to multiple object reads, while LADS’ single I/O thread
will only read a single object at a time. I/O parallelism
for bbcp is limited to four, which is a Lustre default file

Threads (#) 1 2 4 8
LADS 58.71 116.30 228.38 407.02
bbcp 59.91 58.46 57.85 59.49

Table 2: Throughput comparison (MB/s).

stripe count. On the other hand, LADS allows multiple
I/O threads to operate on multiple objects from differing
files, resulting in multiple threads to work on multiple
OSTs simultaneously. Therefore, LADS can fully take
advantage of the parallelism available from multiple ob-
ject storage targets.

5 Related Work
Many prior studies have performed on the design and im-
plementation of bulk data movement frameworks [2, 12,
28, 26, 25, 29] and their optimization in wide-area net-
works [33]. GridFTP [2], provided by Globus toolkit,
extends the standard File Transfer Protocol (FTP), and
provides high speed, reliable, and secure data transfer.
It has a striping feature that enables multi-host to multi-
host transfers with each host transferring a subset of files,
but does not try to schedule based on the underlying ob-
ject locations. bbcp [12] is another data transfer utility
for moving large files securely, and quickly using multi-
ple streams. It uses a single I/O thread and a file based
I/O, and its I/O bandwidth is limited by the stripe width
of a file. XDD [28] optimizes the disk I/O performance;
enabling file access with direct I/Os and multiple threads
for parallelism, and varying file offset ordering to im-
prove I/O access times. These tools are useful for moving
large data faster and securely from source host to remote
host over the network, but none try to schedule based
on the underlying object locations or to detect congested
storage targets. Other related work has focused on cou-
pling MPI applications over a terabit network infrastruc-
ture [32]. It has investigated a model based on MPI-IO
and CCI for transferring large data sets between two MPI
applications at different sites. This work does not exploit
the underlying file system layouts to improving I/O per-
formance for data transfers either.

Storage contention problems remain a challenge for
shared file systems [19, 17, 37, 15, 18]. Reads or writes
can be stalled at the file system with overloaded storage
targets. The storage target can be busy due to a heavy I/O
load by some other applications, or when it is part of a
RAID rebuild process. Moreover, I/O server (OSS) can
experience bursty I/O requests. Consequently, a longer
latency from the storage target can violate the Quality-
of-Service (QoS) for file operations [11]. The storage
contention can occur even if there is one user application.
Multiple threads can implement the program, and one or
more threads can share the same storage target, causing
contentions. Therefore, the program needs a mechanism
for multiple accesses to not compete for the same re-

12



source, and needs to be designed in a way to minimize
the side-effect created by another user I/O streams. In
our prior work [15], we examined the I/O performance
of traditional versus layout-aware scheduling. And we
addressed a few heuristic algorithms to avoid congested
servers. However those algorithms were not fully ex-
ploited. On the other hand, in this work, we have fully
developed an end-to-end data transfer tool using CCI in-
tegrated with layout-awareness algorithms and evaluated
them.

Our work differs in several key areas from prior works:
(i) We use layout-aware data scheduling to maximize
parallelism within the PFS’ network paths, servers, and
disks. (ii) We focus on the total workload of objects with-
out artificially synchronizing on logical files. (iii) We de-
tect server congestion to minimize our impact on the PFS
in order to avoid negatively impacting the performance
of the PFS’ primary customer, a large HPC system. (iv)
We use a modern network abstraction layer, CCI, to take
advantage of HPC interconnects to improve throughput.

While our work has focused on I/O optimization for
Lustre file systems, one could add support for other par-
allel file systems such as GPFS [27], and Ceph [35].
LADS needs four pieces of information about a given
file: object size, stripe width, IDs of servers, and ob-
ject offsets held by each server. If the parallel file sys-
tem exposes this information to the user, LADS could
be implemented for that file system. In Ceph [7]
for example, it can return a structure of file system
data layout using ioctl with some parameters (e.g.,
CEPH IOC GET LAYOUT). In Eshel et. al. [8], they
describe how pNFS used the layout information of a file
in PanFS to perform direct and parallel I/Os.

6 Conclusion
Moving large data sets between geographically dis-
tributed organizations is a challenging problem which
constrains the ability of researchers to share data. Future
terabit networks will help improve the network portion of
the data transfer, but not the end-to-end transfer, which
sources and sinks the data sets in parallel file systems,
due to the impedance mismatch between the faster net-
work and much slower storage system. In this study, we
identified multiple bottlenecks that exist along the end-
to-end data transfer from source and sink host systems
in terabit networks, and we proposed LADS to demon-
strate techniques that can alleviate some end-to-end bot-
tlenecks while at the same time trying not to negatively
impact the use of the PFS by other resources, especially
large HPC systems. To minimize the effects of tran-
sient congestion within a subset of storage servers, LADS
implemented three I/O optimization techniques: layout-
aware scheduling, congestion-aware scheduling, and ob-
ject caching using SSDs.

Acknowledgments
We thank the reviewers and our shepherd, Nitin Agrawal,
for their constructive comments that have significantly
improved the paper. This research is sponsored by the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy and used resources of the Oak
Ridge Leadership Computing Facility, located in the Na-
tional Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office
of Science of the Department of Energy under Contract
DE-AC05-00OR22725.

References

[1] ALCF. Argonne Leadership Computing Facility.
https://www.alcf.anl.gov/.

[2] ALLCOCK, W., BRESNAHAN, J., KETTIMUTHU,
R., LINK, M., DUMITRESCU, C., RAICU, I., AND
FOSTER, I. The Globus Striped GridFTP Frame-
work and Server. In Proceedings of the Interna-
tional Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2005), SC
’05, pp. 54–64.

[3] ATCHLEY, S., DILLOW, D., SHIPMAN, G. M.,
GEOFFRAY, P., SQUYRES, J. M., BOSILCA, G.,
AND MINNICH, R. The Common Communication
Interface (CCI). In Proceedings of the Hot Inter-
connects (2011), pp. 51–60.

[4] BADAM, A., AND PAI, V. S. SSDAlloc: Hy-
brid SSD/RAM Memory Management Made Easy.
In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation
(2011), NSDI’11, pp. 211–224.

[5] BILL HARROD. US Department of Energy Big
Data and Scientific Discovery. http://www.
exascale.org/bdec/sites/www.exascale.
org.bdec/files/talk4-Harrod.pdf.

[6] CCI: Common Communication Interface. http:
//cci-forum.com//.

[7] Ceph. https://github.com/ceph/.

[8] ESHEL, M., HASKIN, R., HILDEBRAND, D.,
NAIK, M., SCHMUCK, F., AND TEWARI, R.
Panache: A Parallel File System Cache for Global
File Access. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies
(2010), FAST ’10, pp. 155–168.

[9] ESSEN, B. V., HSIEH, H., AMES, S., AND
GOKHALE, M. DI-MMAP: A High Performance
Memory-Map Runtime for Data-Intensive Applica-
tions. In Proceedings of the 2012 SC Companion:
High Performance Computing, Networking Storage

13



and Analysis, Salt Lake City, UT, USA, November
10-16, 2012 (2012), pp. 731–735.

[10] FUSION-IO. Fusion-io ioDrive Duo. http://www.
fusionio.com/products/iodrive-duo.

[11] GULATI, A., MERCHANT, A., AND VARMAN,
P. J. pClock: An Arrival Curve Based Approach
for QoS Guarantees in Shared Storage Systems. In
Proceedings of the 7th ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling
of Computer Systems (2007), SIGMETRICS ’07,
pp. 13–24.

[12] HANUSHEVSKY, A. BBCP. http://www.slac.
stanford.edu/~abh/bbcp/.

[13] HOLLAND, M., AND GIBSON, G. A. Parity
Declustering for Continuous Operation in Redun-
dant Disk Arrays. In Proceedings of the Fifth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(1992), ASPLOS V, pp. 23–35.

[14] HONEYMAN, P., LEVER, C., MOLLOY, S., AND
PROVOS, N. The Linux Scalability Project. Tech.
rep., 1999.

[15] KIM, Y., ATCHLEY, S., VALLÉE, G. R., AND
SHIPMAN, G. M. Layout-Aware I/O Scheduling
for Terabits Data Movement. In Proceedings of
the IEEE International Conference on Big Data -
Workshop on Distributed Storage Systems and Cod-
ing for BigData (2013), IEEE Big Data ’13, pp. 44–
51.

[16] LIM, S.-H., HUH, J.-S., KIM, Y., SHIPMAN,
G. M., AND DAS, C. R. D-factor: A Quantitative
Model of Application Slow-down in Multi-resource
Shared Systems. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Model-
ing of Computer Systems (2012), SIGMETRICS
’12, pp. 271–282.

[17] LIU, Q., PODHORSZKI, N., LOGAN, J., AND
KLASKY, S. Runtime I/O Re-Routing + Throttling
on HPC Storage. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Sys-
tems (2013), HotStorage ’13.

[18] LIU, Y., GUNASEKARAN, R., MA, X., AND
VAZHKUDAI, S. S. Automatic Identification of
Application I/O Signatures from Noisy Server-Side
Traces. In Proceedings of the 12th USENIX Con-
ference on File and Storage Technologies (2014),
FAST ’14, pp. 213–228.

[19] LOFSTEAD, J., ZHENG, F., LIU, Q., KLASKY, S.,
OLDFIELD, R., KORDENBROCK, T., SCHWAN,
K., AND WOLF, M. Managing Variability in the
IO Performance of Petascale Storage Systems. In

Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Net-
working, Storage and Analysis (2010), SC ’10,
pp. 1–12.

[20] NERSC. National Energy Research Scientific
Computing Cente. https://www.nersc.gov/.

[21] OLCF. I/O Benchmark Suite. https:
//www.olcf.ornl.gov/center-projects/
file-system-projects/.

[22] OLCF. Oak Ridge Leadership Computing Facility.
https://www.olcf.ornl.gov/.

[23] OPENNVM. OpenNVM. http://opennvm.
github.io/.

[24] ORAL, S., SIMMONS, J., HILL, J., LEVER-
MAN, D., WANG, F., EZELL, M., MILLER,
R., FULLER, D., GUNASEKARAN, R., KIM, Y.,
GUPTA, S., TIWARI, D., VAZHKUDAI, S. S.,
ROGERS, J. H., DILLOW, D., SHIPMAN, G. M.,
AND BLAND, A. S. Best Practices and Lessons
Learned from Deploying and Operating Large-
scale Data-centric Parallel File Systems. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (2014), SC ’14, pp. 217–228.

[25] REN, Y., LI, T., YU, D., JIN, S., AND ROBER-
TAZZI, T. Design and Performance Evaluation
of NUMA-aware RDMA-based End-to-end Data
Transfer Systems. In Proceedings of the Interna-
tional Conference on High Performance Comput-
ing, Networking, Storage and Analysis (2013), SC
’13, pp. 48:1–48:10.

[26] REN, Y., LI, T., YU, D., JIN, S., ROBERTAZZI,
T., TIERNEY, B. L., AND POUYOUL, E. Protocols
for Wide-area Data-intensive Applications: Design
and Performance Issues. In Proceedings of the In-
ternational Conference on High Performance Com-
puting, Networking, Storage and Analysis (2012),
SC ’12, pp. 34:1–34:11.

[27] SCHMUCK, F., AND HASKIN, R. GPFS: A Shared-
Disk File System for Large Computing Clusters. In
Proceedings of the 1st USENIX Conference on File
and Storage Technologies (2002), FAST ’02.

[28] SETTLEMYER, B., DOBSON, J. M., HODSON,
S. W., KUEHN, J. A., POOLE, S. W., AND
RUWART, T. M. A Technique for Moving Large
Data Sets over High-Performance Long Distance
Networks. In Proceedings of the IEEE Sympo-
sium on Massive Storage Systems and Technologies
(2011), MSST ’11, pp. 1–6.

[29] SUBRAMONI, H., LAI, P., KETTIMUTHU, R.,
AND PANDA, D. K. High Performance Data
Transfer in Grid Environment Using GridFTP over

14



InfiniBand. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (2010), CCGRID ’10,
pp. 557–564.

[30] TORRELLAS, J. Architectures for Extreme-Scale
Computing. Computer 42, 11 (Nov. 2009), 28–35.

[31] U.S. DEPARTMENT OF ENERGY, OFFICE OF SCI-
ENCE. Energy Science Network (ESnet). http:
//www.es.net/.

[32] VALLÉE, G., ATCHLEY, S., KIM, Y., AND SHIP-
MAN, G. M. End-to-End Data Movement Using
MPI-IO Over Routed Terabits Infrastructures. In
Proceedings of the 3rd IEEE/ACM International
Workshop on Network-aware Data Management
(2013), NDM ’13, pp. 9:1–9:8.

[33] VAZHKUDAI, S., SCHOPF, J. M., AND FOSTER,
I. F. Predicting the Performance of Wide Area Data
Transfers. In Proceedings of the IEEE 15th Inter-
national Parallel and Distributed Processing Sym-
posium (2001), IPDPS ’01.

[34] WANG, C., VAZHKUDAI, S. S., MA, X., MENG,
F., KIM, Y., AND ENGELMANN, C. NVMalloc:
Exposing an Aggregate SSD Store As a Memory
Partition in Extreme-Scale Machines. In Proceed-
ings of the 2012 IEEE 26th International Paral-
lel and Distributed Processing Symposium (2012),
IPDPS ’12, pp. 957–968.

[35] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MALTZAHN, C. Ceph: A
Scalable, High-performance Distributed File Sys-
tem. In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (2006),
OSDI ’06, pp. 307–320.

[36] WELCH, B., UNANGST, M., ABBASI, Z., GIB-
SON, G., MUELLER, B., SMALL, J., ZELENKA,
J., AND ZHOU, B. Scalable Performance of the
Panasas Parallel File System. In Proceedings of the
6th USENIX Conference on File and Storage Tech-
nologies (2008), FAST ’08, pp. 2:1–2:17.

[37] XIE, B., CHASE, J., DILLOW, D., DROKIN, O.,
KLASKY, S., ORAL, S., AND PODHORSZKI, N.
Characterizing Output Bottlenecks in a Supercom-
puter. In Proceedings of the International Confer-
ence on High Performance Computing, Network-
ing, Storage and Analysis (2012), SC ’12, pp. 8:1–
8:11.

15


